

Brief information about the project

h	L DOO (00101			
Name of the project	AP22688191 «High-performance construction and			
	visualization of unstructured adaptive grids»			
	(0124PK00207)			
Relevance	This project is dedicated to the development of an			
	application for the construction and visualization of three-			
	dimensional adaptive grids. The peculiarity lies in the use			
	of neural networks to build adaptive computational grids,			
	in the use of a high-performance visualization module			
	based on a new shader model (mesh shaders).			
Purpose	The goal of this project is to study the construction of			
	structured and unstructured grids using high-performance			
	computing and neural network algorithms, to develop an			
	application for visualizing 3D grids with a large volume			
	of primitives.			
Objectives	To achieve the goals of this project, the following tasks are			
	planned:			
	1) Development of a high-performance visualization module			
	for displaying computational grids using mesh shaders and			
	Vulkan API.			
	2) Development of a parallel algorithm for constructing 3D			
	unstructured computational grids.			
	3) Using neural network algorithms to build structured and			
	unstructured computational grids.			
Expected and achieved results	- Parallel algorithms for constructing three-dimensional			
	adaptive computational grids will be researched and			
	implemented;			
	- Algorithms will be developed for building structured			
	adaptive computational grids using physics-informed neu			
	networks;			
	- Algorithms will be developed for building unstructured adaptive computational grids using generative algorithms of			
	neural networks;			
	- A high-performance application for visualization of			
	structured and unstructured computational grids will be			
	developed.			
Research team members with their	1. Mustafin Maksat, master of natural sciences, senior			
identifiers (Scopus Author ID,	lecturer: h-index – 1, ResearcherID: AGG-1615-2022,			
Researcher ID, ORCID, if available)	ORCID: 0000-0002-3655-0771, Scopus Author ID:			
and links to relevant profiles	57221606197.			
_	2.Turar Olzhas, PhD: h-index – 4, ORCID: 0000-0002-6720-			
	0045 Scopus Author ID: 56523413700.			
Publications list with links to them	1. Turar, O., Mustafin, M., & Akhmed-Zaki, D. (2025).			
	Adaptive Grid Generation by Solving One-Dimensional			
	Diffusion Equation Using Physics-Informed Neural			
	Networks. Algorithms, 18(6), 334.			
	https://doi.org/10.3390/a18060334			
	https://www.mdpi.com/1999-4893/18/6/334			

Figure 1. Results of one-dimensional adaptive mesh generation using the numerical method and the PINN method.

Figure 2. Results of two-dimensional adaptive mesh generation using the numerical method and the PINN method.